Quasideterminant solutions of a non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation
نویسنده
چکیده
Two families of solutions of a generalized non-Abelian Toda lattice are considered. These solutions are expressed in terms of quasideterminants, constructed by means of Darboux and binary Darboux transformations. As an example of the application of these solutions, we consider the 2-periodic reduction to a matrix sine-Gordon equation. In particular, we investigate the interaction properties of polarized kink solutions.
منابع مشابه
Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...
متن کاملOn solutions to the non-Abelian Hirota–Miwa equation and its continuum limits
In this paper, we construct Grammian-like quasideterminant solutions of a non-Abelian Hirota–Miwa equation. Through continuum limits of this non-Abelian Hirota–Miwa equation and its quasideterminant solutions, we construct a cascade of noncommutative differential-difference equations ending with the non-commutative KP equation. For each of these systems, the quasideterminant solutions are const...
متن کاملAlgebro-geometric Poisson Brackets for Real Finite-zone Solutions of the Sine-gordon Equation and the Nonlinear Schrödinger Equation
Algebro-geometric Poisson brackets for real, finite-zone solutions of the Korteweg–de Vries (KdV) equation were studied in [1]. The transfer of this theory to the Toda lattice and the sinh-Gordon equation is more or less obvious. The complex part of the finite-zone theory for the nonlinear Schrödinger equation (NS) and the sine-Gordon equation (SG) is analogous to KdV, but conditions that solut...
متن کاملA noncommutative semi-discrete Toda equation and its quasideterminant solutions
A noncommutative version of the semi-discrete Toda equation is considered. A Lax pair and its Darboux transformations and binary Darboux transformations are found and they are used to construct two families of quasideterminant solutions.
متن کاملApplication of the Adomian Decomposition Method to Fully Nonlinear Sine-Gordon Equation
In this paper, a type of fully nonlinear Sine-Gordon equations and the approximate Sine-Gordon equation (under the condition: |up|is very small) are studied.Through proper transformation, some initial value problems of many equations with special nonlinear terms are solved by the Adomian decomposition method and some exact solutions: kink solution ,compacton solution, multi-compacton solution, ...
متن کامل